ID No.	346
研究課題名	腸管 TLR の機能解析
研究代表者	辻 典子 (産業技術総合研究所・上級主任研究員)
研究組織	
受入教員	三宅 健介 (東京大学医科学研究所・教授)
研究分担者	福井 竜太郎 (東京大学医科学研究所・助教)
研究報告書	

Double-stranded RNA of lactic acid bacteria (LAB) is recognized by dendritic cells (DCs) via endosomal-TLR3 and benefits the anti-inflammatory response through induction of interferon- β (IFN- β). However, how such IFN- β impacts T cell immune responses, and how immune homeostasis is better maintained in the presence of commensal or food-derived LAB is unknown. Here we show that LAB enhances interleukin-12 (IL-12) secretion by DCs and differentiation of IFN- γ -producing T cells in an IFN- β -dependent manner. We demonstrated that IFN- β secreted in response to LAB increased IFN regulatory factor 1 (IRF1) and IRF7 mRNA, which contribute to *Il12p35* expression. It was clarified that CD11c⁺CD11b⁻CD8 α ⁺CD103⁺ DCs in Peyer's patches mainly induced Th1 cell differentiation through IFN- β production in response to LAB. The resultant induction of IFN- γ production in CD4⁺ T cells also occurs *in vivo*, where oral administration and maintenance of *Foxp3* expression by CD4⁺ T cells due to TLR3-mediated IFN- β production may thus confer anti-allergic or anti-inflammatory activity by commensal or probiotic LAB.