ID No.	340	
研究課題名	脂質受容体による免疫応答制御機構の解明	
研究代表者	横地 高志 (愛知医科大学・教授)	
研究組織		
受入教員	三宅 健介	(東京大学医科学研究所・教授)
研究分担者	髙村(赤司)祥子	(愛知医科大学・教授)
	Erdenezaya Odkhuu	(愛知医科大学・助教)
	森田 奈央子	(愛知医科大学・大学院生)

研究報告書

TLR(Toll-like receptor)4 類似分子である RP105 は、分泌タンパク MD-1 と会合して初めて B 細胞表面に発現し、抗 RP105 抗体刺激により強力な B 細胞活性化を誘導することができる。これまでに以下のことを見出した。

- 1. MD-1 はリゾリン脂質の一種、S1P(スフィンゴシン 1 リン酸)とも会合する。
- 2. S1P 受容体のひとつ、S1P1 が欠失したマウスの B 細胞では、RP105 抗体刺激などによる B 細胞活性化が減弱する。
- 3. BCR(B 細胞受容体)とS1P1とは会合している。

以上の結果は日本免疫学会(2014年12月10日—12日、京都)にて報告した。S1P1, BCR と MD-1 との関係についてさらに検討を続けていく予定である。

またいっぽうで、MD-1 欠失マウスを SLE モデルマウスにかけあわせたマウスでは B 細胞 リンパ腫になりやすい傾向を見出したことから、MD-1 によるリンパ腫発症制御のメカニズム に関してもさらに検討を進めてゆく予定である。