No.

AL,

G ARE =]

K24-3124

Discovery of antibodies with potential therapeutic applications aided by machine
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During this research period we curated a dataset comprising antibody sequences targeting SARS-CoV and SARS-CoV-2.
Specifically, we collected the heavy and light chain sequences of antibodies, along with experimentally measured 1C50.
(Half-maximal inhibitory concentration) values indicating their neutralization potency. Approximately 7,000 antibodies with
[C50 measurements against the wild-type (WT) strain of SARS-CoV-2 were included, along with around 3,500 IC50 values
for major Omicron variants (BA.1, BA.2, BA.2.75, BA.5, and XBB). Data collection was performed by mining The
Coronavirus Antibody Database (CoV-AbDab) database created by The Oxford Protein Informatics Group (Department of]
Statistics, University of Oxford) to retrieve antibody sequences against SARS-CoV-2. Additionally, we searched the original
publications to obtain the experimental IC50 (half maximal inhibitory concentration) values derived from pseudovirus and|
live-virus neutralization assays which represent the concentration of an antibody needed to inhibit 50% of viral activity,
serving as a key measure of antibody potency in neutralization assays. In total, 350 publications were reviewed to compile
the data.
For predicting antibody neutralization, we proposed leveraging AntiBERTY, a pretrained BERT-based model specifically]
optimized for antibody sequence analysis (Figure 1). AntiBERTYy utilizes the rich semantic features captured from antibody
sequences to predict their neutralization potential based on sequence characteristics. Built on a standard BERT architecture,
[AntiBERTY has an embedding size of 512 and is adapted to handle a specialized vocabulary of 25 tokens, allowing it to
effectively encode antibody-related inputs, such as amino acid sequences. The model incorporates positional and token-type
embeddings, which will later be utilized in unsupervised analysis. Its encoder is comprised of 8 transformer layers, each|
featuring self-attention mechanisms and feed-forward networks. In addition to the core BERT architecture, AntiBERTY
includes specialized prediction heads designed for multiple tasks: sequence prediction (language modeling), species|
classification, chain type identification (heavy or light chain), and grafting site prediction, all utilizing linear layers to
address these specific challenges in antibody analysis.
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Figure 1. Overview of the antibody neutralization prediction framework.

Building on this foundation, we extend the pretrained AntiBERTy model by introducing a new module specifically designed|
for predicting antibody neutralization capacity, allowing it to directly associate sequence features with functional
neutralization outcomes against specific antigens, in this case SARS-CoV-2. To extend the capabilities of AntiBERTy
beyond sequence representation, we introduced a neutralization prediction head designed to classify antibody sequences|
based on their potential neutralizing activity. This additive module operates on top of the pretrained AntiBERTy encoder,
utilizing the [CLS] token embedding from the final hidden layer as input. The main idea is to leverage the rich semantic
features captured by AntiBERTy and adapt them to a supervised neutralization task, allowing fine-grained discrimination of]
antibody function without retraining the entire backbone.

Several multilayer perceptron (MLP) architectures are being systematically evaluated to optimize prediction performance.




These architectures vary in depth, hidden dimensionality, and activation functions. Simpler designs include a single linear
layer directly projecting the 512-dimensional [CLS] embedding to a scalar output, while more complex configurations
incorporate one to four hidden layers with dimensions ranging from 32 to 256 neurons. Activation functions such as ReLU,
LeakyReLU, and SELU are tested in combination with regularization strategies including dropout or alpha dropout, and in|
some cases batch normalization. In parallel, we are testing multiple representations of antibody sequences, including using
the heavy chain or light chain individually, combining both chains, and creating sequences from the complementarity-

determining regions (CDRs) to identify the most effective input format for neutralization prediction.

Model
number

Antibody
sequence

AUC

F1
score

Recall

Precision

Accuracy

1

heavy chain

0.701

0.716

0.648

0.801

0.690

9

H1L1

0.702

0.739

0.698

0.784

0.701

3

heavy chain

0.704

0.742

0.704

0.785

0.704

10

H1L1

0.705

0.750

0.723

0.779

0.709

12

L1H1

0.705

0.811

0.765

0.864

0.735

0

H1L1

0.706

0.718

0.648

0.809

0.693

10

heavy chain

0.706

0.729

0.669

0.800

0.699

H1L1

0.707

0.711

0.630

0.817

0.691

H1L1

0.712

0.738

0.684

0.801

0.706

heavy chain

0.712

0.731

0.667

0.808

0.703

H1L1

0.713

0.715

0.631

0.825

0.696

w|lo [N lw| o

heavy chain

0.723

0.719

0.629

0.840

0.703

Table 1. Performance metrics across different model configurations for antibody neutralization prediction. Several model architectures were

evaluated using different antibody sequence inputs.

So far, the results are promising. As shown in the Table 1, several model configurations achieved strong predictive
performance across multiple evaluation metrics. Specifically, the best-performing models demonstrated high AUC (Area
|Under the Curve) values and strong F1 scores in the validation data. Importantly, we observed that the best-performing
models consistently utilized the same antibody sequence representation, highlighting that the choice of input encoding has
a major impact on prediction performance. In particular, using only the heavy chains and combining the CDRs
(complementarity-determining regions) of both heavy and light chain sequences in particular orders, provided a more
comprehensive characterization of the antibody and improved the model’s ability to capture relevant functional features|
associated with neutralization. Preliminary analysis of the embeddings shows grouping of highly neutralizing antibodies|
(yellow points) particularly in the circled region (Figure 2). This suggests that fine-tuning helps to subtly refine the antibody|
representations, making functional patterns more apparent. These preliminary results are encouraging and demonstrate that
AntiBERTy-based embeddings, when fine-tuned with a dedicated neutralization prediction head, can accurately capture
functional antibody properties directly from sequence information.
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Figure 2. t-SNE visualization of antibody sequence embeddings after fine-tuning. Colors represent antibody neutralization potency based on

1Cso values (purple: non-neutralizing, green: moderate neutralization, blue: low neutralization, yellow: high neutralization).

In summary, we have successfully collected the data and tested neutralization predictions using AntiBERTy with different
predictor layers. We have also visualized the AntiBERTy embeddings of antibodies. In further steps, we will try to improve
the prediction metrics and analized the embeddings using unsupervised learning to select antibodies with broadly]
neutralizing capabilities. We expect to experimentally produce the antibodies at the end of the fiscal year 2025.




