Social Cooperation Research Program **Project Division of Generative AI Utilization Aging Cells** 生成 AI 活用加齢医学社会連携研究部門

Project Associate Professor Teh-Wei Wang, Ph.D. 特任准教授 博士(理学) 王 德 瑋

Aging and many age-related diseases are fundamentally linked to chronic inflammation. It is widely accepted that the accumulation of senescent cells in the body over time is one of the major contributors to chronic inflammation. However, our understanding of senescent cells in human tissues remains extremely limited. In our study, we utilized large-scale single-cell RNA sequencing data obtained from mouse models and integrated it with generative AI techniques to explore the characteristics of senescent cells. By applying these insights to human datasets, we aim to further elucidate the features of senescent cells in human tissues and identify potential strategies to target these cells, providing a clue for novel antiaging therapeutic approaches.

1. Senescent hepatocytes promote liver fibrosis through activating LIFR pathway

Koji Nishikawa^{1,2}, Teh-Wei Wang, Satoshi Kawakami¹, Shota Tanimoto¹, Kiyoshi Yamaguchi³, Taketomo Kido⁴, Masamichi Kimura², Tsunekazu Hishima⁵, Yuki T. Okamura¹, Satotaka Omori⁶, Takumi Iritani⁷, Toshikaze Chiba⁸, Takehiro Jimbo⁸, Michio Katano⁷, Kansuporn Kamataki⁷, Ryoichi Yokoyama⁹, Eigo Shimizu¹⁰, Kiminori Kimura², Satoshi Yamzaki¹¹, Seiya Imoto¹⁰, Yoichi Furukawa³, Atsushi Miyajima⁴, Yoshikazu Johmura¹² and Makoto Nakanishi¹

¹Division of Cancer Cell Biology, IMSUT. ²Department of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital. ³Division of Clinical Genome Research, IMSUT. ⁴Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo. ⁵Department of Pathology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital. ⁶Integrated Biosciences, Redwood City, CA, USA. ⁷GMO Internet Group, Inc. ⁸GMO Research Activity Support & Technology, Inc. ⁹GMO Healthtech, Inc. ¹⁰Division of Health Medical Intelligence, Human Genome Center, Center for Experimental Medicine and Systems Biology, IMSUT. ¹¹Division of Cell Regulation, Center of Experimental Medicine and Systems Biology, IM-SUT. ¹²Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University.

Liver fibrosis is a harmful outcome of the tissue repair process following chronic liver injury, predominantly thought to be initiated by hepatocytes. However, the specific hepatocyte subtypes and signaling pathways responsible for this activation remain poorly understood. Previous studies have demonstrated a strong correlation between the severity of fibrosis in cirrhotic patients and the prevalence of hepatocytes expressing high levels of p16^{Ink4a} (p16^h hepatocytes). Based on this observation, we hypothesized that p16^h hepatocytes might play a key role in triggering fibrogenic responses upon liver injury.

In a long-term CCl₄-induced hepatitis model, a marked accumulation of p16^h hepatocytes were ob-

served specifically in zone 3 of the liver. These cells displayed several hallmarks of cellular senescence, and their abundance was significantly associated with the extent of liver fibrosis. Remarkably, selective depletion of p16^h hepatocytes alleviated CCl_4 -induced liver fibrosis, likely by reducing the activation of hepatic stellate cells. Single-cell transcriptomic analysis of murine and human hepatocytes further identified the LIFR signaling pathway as a critical mediator linking p16^h hepatocytes to the fibrogenic activation

- Zeng X, Wang TW, Yamaguchi K, Hatakeyama S, Yamazaki S, Shimizu E, Imoto S, Furukawa Y, Johmura Y, Nakanishi M. M2 macrophage-derived TGF-β induces age-associated loss of adipogenesis through progenitor cell senescence. Mol Metab. 84:101943, 2024.
- Wang TW, Nakanishi M. Immune surveillance of senescence: potential application to age-related diseases. Trends Cell Biol. S0962-8924(24)00121-1, 2024.
- Chang YH, Yamamoto K, Fujino T, Wang TW, Sugimoto E, Zhang W, Yabushita T, Suzaki K, Pietsch EC, Weir BA, Crescenzo R, Cowley GS, Attar R, Philippar U, Wunderlich M, Mizukawa B,

of hepatic stellate cells.

In addition, by using generative AI, we translated the gene signatures of p16^h hepatocytes from mice into corresponding human genes, based on both gene sequences and protein sequences. Using these translated results, we investigated senescent hepatocytes in human cirrhotic samples. Our analysis revealed that the subset of hepatocytes with the highest similarity to the mouse p16^h profile is likely associated with precancerous lesions.

Publication

Zheng Y, Enomoto Y, Imai Y, Kitamura T, Goyama S. SETDB1 suppresses NK cell-mediated immunosurveillance in acute myeloid leukemia with granulo-monocytic differentiation. **Cell Rep.** 43(8): 114536, 2024.

4. Meguro S, Johmura Y, Wang TW, Kawakami S, Tanimoto S, Omori S, Okamura YT, Hoshi S, Kayama E, Yamaguchi K, Hatakeyama S, Yamazaki S, Shimizu E, Imoto S, Furukawa Y, Kojima Y, Nakanishi M. Preexisting senescent fibroblasts in the aged bladder create a tumor-permissive niche through CXCL12 secretion. Nat Aging. 4(11):1582-1597, 2024.