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Project Outline 

Project 1) Roles of programmed cell death in human coronavirus infection 

Programmed cell death (PCD) induced during virus infection results in inhibition of viral replication for 

certain viruses, but in promotion of it for other viruses. Until now, it remains to be studied what PCD can 

be induced during human coronavirus infection and how PCD impact replication of human coronaviruses. 

The Hirasawa lab at Memorial University recently identified that infection of non-pathogenic human 

coronaviruses (229E and OC43) induces pyroptosis and necroptosis, which, in turn, promotes their 

replication. To expand this study to SARS-CoV-2, the collaboration with Dr. Kawaguchi and Gohda at the 

Institute of Medical Sciences, supported by the IMSUT Joint research grant, has been established. Dr. 

Yasushi Kawaguchi, Dr. Jin Gohda, Dr. Ken Hirasawa, Dr. Maria Licursi and Lingyan Wang (PhD 

student) were involved in the project.  

 

Project 2) Characterization of antiviral functions of interferon regulatory factors (IRFs) against 

human coronavirus infection  

Human coronaviruses are known to be generally sensitive to antiviral actions of interferons. However, the 

functions of antiviral IRFs such as IRF1, IRF3 and IRF7 during human coronavirus infection have not 

been clarified. At Memorial University of Newfoundland, we determined antiviral functions of IRF1, IRF3 

and IRF7 against human coronavirus 229E and OC43 (BSL2 level) and found that IRF3 is the most 

effective IRF against human coronavirus infection. With the collaboration with Dr. Kawaguchi and Gohda 

at the Institute of Medical Sciences, supported by the IMSUT Joint research grant, we also analyzed 

activation of the antiviral IRFs in SARS-CoV-2 infected cells. Dr. Yasushi Kawaguchi, Dr. Jin Gohda, Dr. 

Ken Hirasawa, Dr. Maria Licursi and Joseph Duncan (PhD student) were involved in the project.  

 

 

Reseach Progress (April 2023-March 2023) 

Project 1) Protein samples of SARS-CoV-2 infected cells were prepared at the BSL3 facility in at the 

Institute of Medical Sciences has been established, which were sent to Dr. Hirasawa’s lab at Memorial 

University of Newfoundland. We conducted biochemical analysis and found that SARS-CoV-2 infection 

induces pyroptosis and necroptosis. A manuscript with the results is currently in preparation.  

 

Project 2) The protein samples were analyzed for activation of interferon regulatory factors (IRFs) during 

SARS-CoV-2 infection. We identify that antiviral IRFs such as IRF1, 3 and 7 are activated during SARS-

CoV-2 infection. This work was presented at the Canadian Society for Virology, at University of Alberta 

on June 6 2022 and accepted in Frontiers in Immunology (attached) 
 

Dr. Hirasawa visited Dr. Kawguchi and Gohda at the Institute of Medical sciences, University of Tokyo on 

October 28, 2022 and discussed the research progress.  

 

Dr. Hirasawa laboratory (Dr. Ken Hirasawa, Dr. Maria Licursi, Lingyan Wang, Joseph Duncan and Noah 

Conohan) participated the Joint Seminar in Virology held at the Institute of Medical sciences, University of 

Tokyo on March 9, 2023 and presented their research progress (attached).  

 

 



                                                                                                                        

 

Online meetings and email exchanges have been routinely held to maintain active collaboration and to plan 

further experiments.   

 

Overall, we had a very good start of the collaboration between the two laboratories and are poised to expand 

our collaboration further next year.  
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Interferon regulatory factor 3
mediates effective antiviral
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229E and OC43 infection

Joseph K. Sampson Duncan1†
Q3 Q14

Q5
Q25

, Danyang Xu1†, Maria Licursi 1,
Michael A. Joyce2,3, Holly A. Saffran2,3, Kaiwen Liu1, Jin Gohda4,
Lorne D. Tyrrell2,3, Yasushi Kawaguchi4,5,6

and Kensuke Hirasawa1*

1Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St.
John’s, NL, Canada Q6, 2Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada,
3Department of Biochemistry, University of Alberta, Edmonton, AB, Canada Q7, 4Research Center for
Asian Infectious diseases, The Institute of Medical Science, The University of Tokyo, 5Division of
Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science,
The University of Tokyo, Tokyo, Japan, 6Department of Infectious Disease Control, International
Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo

Q8Interferon regulatory factors (IRFs) are key elements of antiviral innate responses that

regulate the transcription of interferons (IFNs) and IFN-stimulated genes (ISGs).While

thesensitivityofhumancoronaviruses to IFNshasbeencharacterized,antiviral rolesof

IRFs during human coronavirus infection are not fully understood. Type I or II IFN

treatment protected MRC5 cells from human coronavirus 229E infection, but not

OC43. Cells infected with 229E or OC43 upregulated ISGs, indicating that antiviral

transcription is not suppressed. Antiviral IRFs, IRF1, IRF3 and IRF7, were activated in

cells infected with 229E, OC43 or severe acute respiratory syndrome-associated

coronavirus 2 (SARS-CoV-2). RNAi knockdown and overexpression of IRFs

demonstrated that IRF1 and IRF3 have antiviral properties against OC43, while IRF3

and IRF7areeffective in restricting229E infection. IRF3activationeffectivelypromotes

transcriptionofantiviral genesduringOC43or229E infection.Ourstudysuggests that

IRFs may be effective antiviral regulators against human coronavirus infection.

KEYWORDS

Q9
Q10

SARS-CoV2, OC43, 229E, innate immunity, interferon, interferon stimulate genes, IRF1,
IRF3, IRF7

Introduction Q11

Human coronaviruses are enveloped single-stranded RNA viruses with positive-sense

genomes that commonly cause respiratory tract infection in humans (1, 2). They are

comprised of 4 genera: alphacoronavirus, betacoronavirus, gammacoronavirus, and

deltacoronavirus. Certain betacoronaviruses are known to cause lethal infection in

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

Frontiers in Immunology frontiersin.org01

OPEN ACCESS

EDITED BY

Kathrin Sutter,
University of Duisburg-Essen, Germany

REVIEWED BY

Pin Ling,
National Cheng Kung University, Taiwan
Vu Thuy Khanh Le-Trilling,
Essen University Hospital, Germany

Q4 *CORRESPONDENCE

Kensuke Hirasawa

kensuke@mun.ca

†These authors have contributed equally to
this work

SPECIALTY SECTION

This article was submitted to
Viral Immunology,
a section of the journal
Frontiers in Immunology

RECEIVED 27 April 2022
ACCEPTED 27 March 2023

PUBLISHED xx xx 2023

CITATION

Duncan JKS, Xu D, Licursi M, Joyce MA,
Saffran HA, Liu K, Gohda J, Tyrrell LD,
Kawaguchi Y and Hirasawa K (2023)
Interferon regulatory factor 3 mediates
effective antiviral responses to human
coronavirus 229E and OC43 infection.
Front. Immunol. 14:930086.
doi: 10.3389/fimmu.2023.930086

COPYRIGHT

© 2023 Duncan, Xu, Licursi, Joyce, Saffran,
Liu, Gohda, Tyrrell, Kawaguchi and Hirasawa.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED xx xx 2023

DOI 10.3389/fimmu.2023.930086



humans, including middle east respiratory syndrome (MERS),

severe acute respiratory syndrome-associated coronavirus (SARS-

CoV) and SARS-CoV-2. MERS infection was first found in 2012;

since then, 2249 infections and 858 deaths in 27 countries have been

reported (3). SARS-CoV caused 8237 infections and 775 deaths in

more than 30 countries in 2002 (4). SARS-CoV-2 was identified in

2019 and is responsible for the current COVID-19 pandemic. As of

today (March 1, 2023), 679 million cases and 6.8 million deaths

have been reported worldwide (5). Other human coronaviruses,

such as OC43, 229E, NL63 and HKUI1, infect the upper respiratory

tract and cause common seasonal cold symptoms (6). OC43 and

HKUI1 are members of the genera betacoronaviruses, while 229E

and NL63 are alphacoronaviruses (7, 8). As the sequence of non-

structural proteins are well-conserved among human

coronaviruses, they share very similar replication cycles (9, 10).

Cells sense viral products intracellularly and extracellularly

using different pattern recognition receptors (PRRs) such as toll-

like receptors, RIG-I-like receptors and melanoma differentiation-

associated gene 5 (MDA-5) (11). The recognition of viral products

results in activation and nuclear translocation of IFN regulatory

factor 3 (IRF3), IFN regulatory factor 7 (IRF7) and nuclear factor-

kQ13 B (NF-kB), which activate the transcription of interferons (IFNs)

(12, 13). IFNs, which have three classes, type I (IFN-a/b), type II

(IFN-g) and type III (IFN-l) IFNs, play essential roles in antiviral

innate immune response (14, 15). Secreted IFNs bind to IFN

receptors in an autocrine or paracrine manner and activate the

Janus kinase (JAK)-signal transducer and activator of transcription

(STAT) (16, 17). Phosphorylated STAT proteins along with other

transcriptional regulators such as IRF1 and IRF9 directly bind to the

promoter regions of IFN-stimulated genes (ISGs) to activate their

transcription (18, 19). Human coronaviruses are generally sensitive

to antiviral functions of IFNs albeit with some differences in their

sensitivity. Both SARS-CoV and MERS are sensitive to IFN when

cells are treated at high concentrations (20–23). Between the two

viruses, IFNs are more effective in inhibiting the replication of

MERS than SARS-CoV (23). Moreover, SARS-CoV-2 is more

sensitive to type I IFNs than SARS-CoV (24, 25). As for other

human coronaviruses, IFNs suppress OC43 infection in a cell type

dependent manner (26), while 229E is sensitive to IFN treatment in

vitro (20, 27). These reports suggest that human coronaviruses are

generally sensitive to IFNs, but each virus has different levels

of sensitivity.

In clinical settings, IFN-b treatment significantly reduced the

mortality of SARS-CoV-2 infected patients when administrated at

an early stage of infection (28). Similarly, treatment of pegylated

IFN-a significantly reduced viral replication of SARS-CoV in

macaques (29). In STAT1 -/- mice, SARS-CoV induced a

prolonged infection with higher viral loads in the lung, suggesting

that the JAK/STAT pathway downstream of IFN receptors is

essential for clearing SARS-CoV in vivo (30). However, SARS-

CoV infection was not exacerbated in IFN-a/b receptor -/- mice,

but instead mouse survival was improved due to reduced immune

cell infiltration in the lung, indicating immunopathogenic roles of

IFNs in SARS-CoV infection (31).

While the antiviral efficacy of IFNs against human coronavirus is

clear, SARS-CoV-2 infected patients displayed low production of type

I and III IFN and a moderate ISG response (32). Similarly, type I IFN

response was delayed in mice infected with SARS-CoV-2, allowing

viral replication, lung immunopathogenesis and lethal pneumonia

(31). These reports suggest that IFN-mediated antiviral innate

responses are dysregulated in SARS-CoV-2 infection in vivo. This

is most likely due to the presence of SARS-CoV-2 proteins that

suppress the production of IFNs and IGSs (33). In summary, IFNs

have antiviral and immunopathogenic roles in human coronavirus

infection. Moreover, IFN antiviral responses are targets of immune

evasion mechanisms by human coronaviruses.

Among IRFs, IRF1, IRF3, and IRF7 are transcriptional

regulators of IFNs and ISGs (34, 35). IRF1 is upregulated during

viral infection or IFN stimulation, which, in turn, activates

transcription of type I IFNs (36, 37). As IRF1 is a co-

transcriptional factor of ISGs regulated by the Jak/STAT pathway,

a subset of ISGs can be induced by IRF1 in an IFN-independent

manner (38). Upon virus infection, the innate immune sensors

interact with viral components and activate the TANK-binding

Kinase 1 (TBK)/kB kinase ϵ (IKKϵ) complex, which induces the

activation of both IRF3 and IRF7 (39, 40). The activation of IRF3

and IRF7 results in the translocation of these proteins to the nucleus

where they initiate the transcription of type I IFNs. Similar to IRF1,

IRF3 can also exhibit antiviral functions independently of the IFN

system by upregulating ISGs independently of IFN production in

vitro (41, 42). IRF3 could be an important component of innate

immune responses against SARS-CoV-2, as blocking

phosphorylation and translocation of IRF3 promotes its

replication (43). Accumulating evidence suggests that human

coronaviruses can interfere with the activity of IRF3. SARS-CoV-

2 PLpro and 3Clpro, viral proteins responsible for cleaving viral

polyproteins, also degrade IRF3 (44, 45). Other studies

demonstrated that SARS-CoV-2 7a reduces IRF3 phosphorylation

by downregulating TBK1 expression levels (46, 47). Similarly,

SARS-CoV 8b and 8ab induce IRF3 degradation in a ubiquitin

dependent manner (44), while MERS M protein disrupts the

interaction of TNF Receptor Associated Factor 3 (TRAF3) and

TBK1, leading to reduced IRF3 activation (44). These studies clearly

suggest that human coronavirus proteins target IRF3 to promote

their replication. In contrast to IRF3, antiviral roles of IRF1 and

IRF7 against human coronavirus infection are less understood. In

animal coronaviruses, IRF1 was shown to have antiviral properties

against mouse hepatitis virus (MHV) (48). The viral M protein of

porcine epidemic diarrhea virus (PEDV) interacts with IRF7 and

inhibits its antiviral functions (33, 49). Thus, it is possible that IRF1

and IRF7 also have antiviral effects in human coronavirus infection.

Although it is suggested that the antiviral IRFs are important for

host antiviral responses against human coronavirus infection, there

is no direct functional evidence reported. In this study, we

conducted loss- and gain-of-function experiments of IRF1, IRF3

and IRF7 to clarify antiviral functions of IRF1, IRF3 and IRF7

during human coronavirus infection. To fight against human

coronavirus infection, it is important to gain more knowledge

about antiviral responses mediated by IRFs during human

coronavirus infection.
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Materials and methods

Cells, viruses, and reagents

Human lung fibroblast cell line MRC5, human lung cancer cell

line H1299, monkey kidney epithelial cell line Vero E6, mouse

fibroblast cell line L929, human coronaviruses HcoV-OC43 and

HcoV-229E were obtained from the American Type Culture

Collection (ATCC; Manassas, VA, USA). Human dermal

fibroblast cells were obtained from Cell Applications Inc. (San

Diego, CA, USA). Vesicular stomatitis virus (VSV, Indiana strain)

was provided by Dr. John C. Bell (Centre for Innovative Cancer

Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada).

VSV was amplified and titrated by plaque assay using L929 cells as

described previously (50). SARS-COV-2 (SARS-CoV-2/CANADA/

VIDO/01/2020) was isolated at the VIDO, University of

Saskatchewan from a clinical specimen obtained at the

Sunnybrook Health Sciences Centre, and propagated at the

National Microbiology Laboratory (NML) was amplified and

titrated by plaque assay using Vero E6 cells (51). Recombinant

human IFN-a2 A, human IFN-g and IFN-l 1 were obtained from

Bio-Rad, BD Pharmingen and R&D Systems respectively.

Antibodies used in this study include: IRF3, phospho-IRF3, IRF7,

phsopho-STAT1 (Cell signalling technology), IRF3 (Santa Cruz),

IRF1 (BD Transduction Laboratories), GAPDH (Santa Cruz

Biotechnology), 229E N protein (Ingenasa), OC43 N protein

(Millipore), SARS-CoV-2 spike protein (Sino Biological). Negative

control siRNA, IRF1 siRNA (s7501), IRF3 siRNAs (s7509) and IRF7

siRNA (s223948) were purchased from Life Technologies. IRF1-

pINCY plasmid (Open biosystems) and IRF7 -ORF vector (Applied

Biological Materials) was subcloned into pcDNA3 plasmid

(Addgene). pcDNA3-IRF3 was purchased from Addgene.

Cell culture

All cells were cultured in high-glucose Dulbecco’s modified

Eagle’s medium (Corning, MA) supplemented with 10% fetal

bovine serum (HyClone, Cytiva), 1 mM sodium pyruvate (Life

Technologies) and antibiotic-antimycotic (Thermo Scientific). Cells

were maintained in 10-cm culture dishes at 37°C with 5% CO2 for

the use of experiments in this work. Hunan Dermal Fibroblasts

were grown on dishes coated with 0.1% gelatine (from Cell

Applications, Inc).

Virus infection

Cells with 90% confluency were infected with human

coronavirus 229E or OC43 with a MOI of 0.01. The diluted stock

viruses were adsorbed for 2 hours at 33°C, and then removed and

replaced with DMEM with 2% FBS. Infected cells were incubated at

33°C with 5% CO2 for up to six days. For IFN treatment, MRC5

cells were treated with IFN-a (250 and 500 U/ml), IFN-g (50 and

100 U/ml) or left untreated for 18 hours and then challenged with

229E or OC43. For siRNA knockdown, cells were transfected with 5

pmol siRNA oligos using Lipofectamine RNAiMAX Transfection

Reagent (Life Technologies) and 24 hours later challenged with or

without 229E or OC43 (MOI of 0.01). For overexpression of IRFs,

cells in 24-well plates (4×104 cells/well) were transfected with

control pcDNA3, pcDNA-IRF1, pcDNA-IRF3 or pcDNA-IRF7

using Lipofectamine 3000 Transfection Reagent (Life

Technologies) and 24 hours later challenged with or without

229E or OC43. VSV absorption and infection (MOI of 0.0001)

were conducted at 37°C with 5% CO2. The amount of progeny

viruses in the culture supernatant was measured by TCID50 (50%

tissue culture infective dose) assay for 229E and OC43 (52) and

plaque assay for VSV (50).

Vero E6 cells expressing TMPRSS2 were seeded into 12 well

plates and infected with SARS CoV-2 at MOI 0.01 or 0.1 and

absorbed for 1 hour at 37°C in DMEM with 2% FBS. After

absorption period, virus was aspirated and replaced with DMEM

containing 5% FBS. At 8 or 24 hours post infection (hpi), cells were

washed with PBS and harvested with RIPA buffer. All infections

were performed in the Canada Foundation for Innovation

Containment Level 3 Facility at the University of Alberta.

UV-inactivation of OC43 and 229E was performed by diluting

the virus in 4ml DMEM with 2% FBS and placed in a 6 cm plastic

petri dish at 45 cm from a 60 W ultraviolet tube for 10 min (53).

Western blot analysis

Cells in each well of a 24-well plate were harvested with 100 ml
radioimmunoprecipitation assay (RIPA) buffer supplemented with

protease inhibitors (Sigma-Aldrich) and phosphatase inhibitors

(Thermo Scientific). SDS sample buffer was added to cell lysates,

followed by a 5-minute boiling period. The same volume of each

sample was subjected to 10% SDS-PAGE. To use the housekeeping

protein (GAPDH) as an indicator of infection/cell death in the

experiments, the loading amounts of the samples were not adjusted

by protein assay. The proteins were then transferred to

nitrocellulose membranes (Bio-Rad, ON, Canada) using a Trans-

blot Turbo Transfer System (Bio-Rad). The membrane was blocked

with 5% skim milk in tris-buffered saline (TBS) with 0.1% Tween 20

(TBS-T) for 1 hour at room temperature and then incubated with

primary antibodies overnight at 4°C. The following day, membranes

were incubated with peroxide-conjugated anti-rabbit or anti-mouse

secondary antibody (Santa Cruz Biotechnology) for 1 hour. Specific

bands were detected with ImageQuant LAS 4000 (GE Healthcare

Life Sciences, QC, Canada) using enhanced chemiluminescence

western blotting detection reagent (Bio-Rad or Amersham).

Quantitative RT-PCR

Quantitative RT-PCR (RT-qPCR) was performed in triplicate

using the previously described validation strategies (54). RNA was

isolated from MRC5 and H1299 cells using TRIzol (Invitrogen)

according to the manufacturer’s instructions. cDNA was

synthesized from the RNA using the RevertAid H Minus First
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Strand cDNA Synthesis Kit (Thermo Scientific). Quantitative PCR

(qPCR) was performed in triplicates using powerSYBR®Green PCR

Master Mix (Life Technologies LTD, UK) and analyzed with

StepOnePlus qPCR system (Applied Biosystems, CA). The

polymerase chain react ion (PCR) procedure was as

manufacturer’s instructions: 95°C for 10 minutes followed by 40

cycles of 95°C for 15 seconds, 60°C for 1 minute, and then followed

by melt-curve analysis. For data analysis, mRNA levels of each gene

were normalized to GAPDH. The fold change of each sample

toward the parental cells sample was calculated using the 2−DDCT

method. The experiment was conducted with biological triplicates.

The primer sequences are shown in Supplementary Table 1. A five-

point, five-fold dilution series was used for primer validation.

Statistical analysis

One-way ANOVA and two-way ANOVA with Dunnett’s or

Turkey’s post-hoc test were performed using GraphPad Prism

6.0 software.

Results

IFN treatment delays 229E infection but
not OC43 infection

To investigate the antiviral effects of IFNs on human

coronavirus infection, we first tested if human lung fibroblast

cells, MRC5, are sensitive to different types of IFNs (Figure 1A).

When MRC5 cells were treated with IFN-a, IFN-g or IFN-Lambda;

for 30 mins, we observed STAT1 phosphorylation in cells treated

with IFN-a or IFN-g, but not in those treated with IFN-Lambda;

This indicates that MRC5 cells are sensitive to type I and type II

IFN, but not to type III IFN. MRC5 cells are reported to lack IFN-

Lambda; receptor (55, 56). Therefore, we focused on type I and II

IFN for the following experiments.

MRC5 cells were left untreated or treated with IFN-a (250 and

500 U/ml) or IFN-g (50 and 100 IU/ml) for 18 hours and then

challenged with 229E (Figure 1B) or OC43 (Figure 1C) at a MOI of

0.01. Cell lysates were harvested at 2, 4 and 6 days after infection for

western blot analysis of viral nucleocapsid proteins N) and

GAPDH. At 2 days following 229E infection, viral protein was

detected in cells without IFN-a treatment, but not in cells treated

with IFN-a (Figure 1B). At 4 days after infection, less viral protein

was detected with a higher IFN-a concentration (500 IU/ml).

Similarly, IFN-g treatment inhibited 229E infection at 2 days, but

not at 4 and 6 days after infection. In contrast, OC43 infection was

not significantly affected by IFN-a or IFN-g, although some minor

reductions in viral protein levels were observed in cells treated with

IFNs at 2 days after infection (Figure 1C). To further confirm the

effect of IFNs on virus production, we conducted a progeny virus

assay (Figures 1D, E). The amount of progeny 229E was

significantly lower in cells treated with IFN-a or IFN-g at 2 days

after infection (Figure 1D). On the other hand, IFN treatment did

not reduce the progeny virus production of OC43 (Figure 1E).

Similarly, OC43 infection was not sensitive to IFN treatment in

human lung cancer cell line H1299, while 229E infection was

inhibited (Supplementary Figure 1). To confirm the efficacy of

IFN to induce sufficient antiviral responses, we conducted a

positive control experiment where MRC5 cells were treated with

the same amount of IFN-a or IFN-g, and then challenged with an

IFN-sensitive virus, vesicular stomatitis virus (VSV). The IFN

treatment completely inhibited VSV protein synthesis (Figure 1F)

and progeny virus production (Figure 1G), indicating the

concentration of IFN used in our system is sufficient to inhibit

the replication of an IFN-sensitive virus. At 4 days after VSV

infection, the expression levels of GAPDH and VSV G were very

low in infected cells without IFN treatment, indicating that VSV

replication was not active because most cells were dead.

Taken together, these results suggest that both type I and II IFN

delay 229E infection in MRC5 and H1299 cells, but they are not

effective in protecting against OC43 infection.

229E and OC43 infection activate
transcription of IFN-stimulated genes

Our next question was whether human coronaviruses activate

antiviral innate responses in infected cells. To test this, we assessed

the transcriptional activation of ISGs at 2 and 4 days after human

coronavirus infection (Figure 2). Western blot analysis was first

conducted to confirm infection of 229E (Figure 2A) and OC43

(Figure 2B). Then, the expression of the following IFN-inducible

genes was examined during 229E (Figure 2C) or OC43 (Figure 2D)

infection: guanylate binding protein 2 (GBP2) (57), interferon

induced protein 44 (IFI44) (58), interferon induced protein with

tetratricopeptide repeats 2 (IFIT2) (59), microtubule-associated

protein 2 (MAP2) (54), retinoic acid-inducible gene I (RIG-I)

(60) and STAT2 (61). 229E infection did not induce GBP2, but

significantly increased the expression of all other genes at 4 days

after infection. In contrast, OC43 infection induced all IFN-

inducible genes tested at 2 days after infection, and the expression

levels were significantly higher than control at 4 days except for

GBP2 and STAT2. The expression of the ISGs was induced at the

earlier stage of infection in cells infected with OC43 than those

infected with 229E. The ISG induction was not observed in cells

infected with UV-inactivated 229E or OC43 (MOI of 0.01),

suggesting that active infection is required for the ISG induction

(Supplementary Figure 2).While GBP2 induction in MRC5 cells

infected with 229E or OC43C infection was lower than those

stimulated with IFN-g, the expression levels of RIG-I and STAT2

induced by 229E or OC43 infection were similar to those induced

by IFN-a or -g stimulation (Supplementary Figure 2). These results

demonstrate that human coronavirus infection induces host

antiviral transcriptional responses.
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IRF1, IRF3 and IRF7 are activated during
human coronavirus infection

As IRF1, IRF3 and IRF7 are the key transcriptional regulators of

IFNs and ISGs, we sought to determine their activation status

during human coronavirus infection. Accordingly, a western blot

analysis was conducted to assess the expression of IRF1 and IRF7,

and phosphorylation of IRF3 (an active form of IRF3) in MRC5

cells infected with 229E or OC43. After 229E infection, viral

proteins were detected from day 2 and reached a peak at day 3

and 4 (Figure 3A). The expression of IRF1 and IRF7 was increased

at 3 and 4 days after infection compared to uninfected controls.

Similarly, phosphorylated IRF3 increased at the same time points.

After OC43 infection, OC43 nucleoprotein was detected at day 1,

which peaked at 3 and 4 days after infection (Figure 3B). In these

infected cells, IRF1 expression increased at day 2 and 3. We

observed an upper shift in IRF1 bands, which could be caused by

posttranslational modifications of IRF1. IRF3 and IRF7 were also

activated from 2 to 5 days after OC43 infection. Activation of IRFs

was not observed in cells infected with UV-inactivated 229E or

D

A

B

E

F G

C

FIGURE 1

Q12
Q15

Q26

IFN treatment delays 229E but not OC43 infection. (A) MRC5 cell were left untreated or treated with IFN-a (500 and 250 U/ml), IFN-g (100 and 50
U/ml) or IFN-l (100 and 50 ng/ml) for 30 min. STAT1 activation was determined by western blot analysis using anti phospho-STAT1 and GAPDH
antibodies. (B and C) MRC5 cells were left untreated or treated with IFN-a or IFN-g for 18 hours, and then challenged with 229E (B) or OC43
(C) infection at MOI of 0.01. Western blot analysis of viral protein was conducted using anti 229E N protein (B), OC43 N protein (C) and GAPDH
antibodies. (D, E) TCID50 assay was performed to measure the progeny virus of 229E or OC43 infected MRC5 cells left untreated or treated with
IFNs (n=3). (F, G) MRC5 cells were left untreated or treated with IFN-a (500U/ml) or IFN-g (100U/ml), and then challenged with VSV at MOI of
0.0001. VSV infection was determined by (F) western blot analysis using anti VSV G and GAPDH antibodies and (G) plaque assay using L929 cells
(n=3). The amount of progeny virus is shown as plaque forming units (PFU)/ml of samples nontreated or treated with IFN. *p<0.05, **p<0.01,
***p<0.001, ****p<0.0001, Two-way ANOVA.
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OC43 infection while IFN stimulation induces higher activation of

the IRFs than 229E or OC43 infection (Supplementary Figure 3).

We also confirmed the activation of IRF1 and IRF3 in human

primary dermal cells (Supplementary Figure 4). The dermal cells

supported 229E or OC43 infection, which increased IRF1

expression at day 2 and 3, and phosphorylation of IRF3 from day

2 to 5. However, activation of IRF7 was not observed.

To determine the effect of SARS-CoV-2 infection on IRFs, Vero

E6 cells expressing TMPRSS2 were infected with SARS-CoV-2 at a

MOI of 0.01 or 0.1 (Figure 3D). Viral proteins were detected at in

cells infected with a MOI of 0.01 at 24 hours post-infection, and at 8

and 24 hours post-infection when infection at a MOI of 0.1. In

SARS-CoV-2 infected cells, there was an increase in IRF1 and IRF7

expression and IRF3 phosphorylation, suggesting that SARS-CoV-2

infection also activates antiviral IRFs.

These results demonstrate that IRF1, IRF3 and IRF7 are

activated during human coronavirus infection.

D

A B

C

Q27 FIGURE 2

Human coronavirus infection activates transcription of IFN-stimulated genes. MRC5 cells were left uninfected or infected with 229E (A, C) or OC43
(B, D) at MOI of 0.01. Infection of 229E (A) and OC43 (B) was confirmed by western blot analysis using anti 229E N protein, OC43 N protein and
GAPDH antibodies. The mRNA levels of ISGs (GBP2, IFI44, IFIT2, MAP2, RIG-I and STAT2) were determined by RT-qPCR in MRC5 cells infected with
229E (C) or OC43 (D) (n=6). The fold change to control indicates the fold change of the expression level for infected samples towards that of the
non-infected controls at the same time point post infection. The transcriptional level for each gene was calculated by normalizing to GAPDH
expression level and then normalized by the corresponding control. **p<0.01, Two-way ANOVA.
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IRF1, 3 and 7 have antiviral roles against
human coronavirus infection

To investigate the functional roles of IRF1, IRF3 and IRF7

during human coronavirus infection, we conducted a loss-of-

function analysis using siRNA knockdown. MRC5 cells were

transfected with either control siRNA oligos or those against

IRF1, IRF3 or IRF7 for 24 hours. The knockdown of IRF1 and

IRF3 was confirmed with western blot analysis, which showed lower

expression levels in cells treated with their corresponding siRNA

oligos (Figure 4A). As IRF7 expression is undetectable by western

blot in non-infected cells, IRF7 knockdown was confirmed by qPCR

analysis (Figure 4B). When these cells were challenged with 229E or

OC43, RT-q-PCR analysis revealed that IRF1 knockdown promotes

229E infection at 3 days after infection and OC43 infection at 2 and

3 days after infection (Figure 4C). IRF3 knockdown also increased

the expression of viral RNA at 2 and 3 days after 229E infection and

2 days after OC43 infection. In addition, IRF7 knockdown resulted

in an increase in 229E infection at 3 days after infection and OC43

infection at 2 and 3 days after infection. These results were further

confirmed by western blot analysis (Figure 4D). 229E viral protein

synthesis was increased in cells treated with siRNA oligos against

IRF3 or IRF7 compared to siRNA controls at 2 days after infection.

For OC43 infection, knockdown of IRF1 or IRF3 promoted viral

protein synthesis compared to siRNA controls at both 2 and 3 days

after infection. Altogether, these loss-of-function experiments

indicate the antiviral roles of IRF1, IRF3 and IRF7 against

coronavirus infection.

To further confirm the antiviral roles of IRF1, IRF3 and IRF7,

we conducted gain-of-function experiments via overexpression.

H1299 cells were transfected with control pcDNA3, IRF1-

pcDNA3, IRF3-pcDNA3 or IRF7-pcDNA3 for 24 hours and then

challenged with 229E or OC43 (Figure 5). IRF1 overexpression

effectively inhibited replication of OC43 as the generation of viral

proteins and progeny viruses were lower in cells transfected with

IRF1-pcDNA than those transfected with control pcDNA3

(Figure 5A). We observed a slight reduction of 229E N protein

expression in IRF1 overexpressed cells at 1 day after infection, but

there was no significant difference in the amount of progeny virus

(Figure 5D). Moreover, 229E and OC43 generated less viral proteins

and progeny viruses in the cells transfected with IRF3-pcDNA3

(Figures 5B, E), suggesting that IRF3 introduction promoted

antiviral activities against both 229E and OC43. Finally, the

introduction of IRF7 effectively reduced 229E infection, but not

OC43 infection, as shown in western blotting and progeny virus

analysis (Figures 5C, F).

To clarify how IRFs demonstrate different antiviral effects

against human coronavirus infection, we investigate expression

A

B

C

FIGURE 3

Human coronavirus infection activates IRF1, IRF3 and IRF7. MRC5 cells were left uninfected (-) or infected (+) with 229E (A) or OC43 (B) at MOI of
0.01. (C) Vero E6 cells expressing TMPRSS2 were left uninfected or infected with SARS-CoV-2 at MOI of 0.01 or at MOI 0.1. The activation of IRF1,
IRF3 and IRF7 was determined by western blot analysis using antibodies against 229E N protein, OC43 N protein, SARS-CoV-2 N protein, IRF1, IRF3,
IRF7, phosphorylated (p-IRF3) and GAPDH.
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levels of antiviral genes in cells transfected with control pcDNA3,

IRF1-pcDNA3, IRF3-pcDNA3 or IRF7-pcDNA3 at 24 hours after

infection of 229E or OC43 (Figure 6). First, the expressions of IRF1,

IRF3 and IRF7 were confirmed (Figure 6A) and then the expression

levels of the ISGs before infection were analyzed (Supplementary

Figure 5). Following infection of 229E or OC43, most antiviral

genes we examined (except GBP2 in IRF7-transfected cells infected

with 229E and IFIT2 in IRF1-transfected cells infected with OC43)

were significantly elevated in cells introduced with IRF1, IRF3 or

IRF7 compared to the vector control infected cells (Figures 6B, C).

Furthermore, the expression of GBP2, IFIT2, MAP2, STAT2 and

IFN-b was higher in IRF3-transfected cells than in IRF1 and/or

IRF7 transfected cells in response to 229E infection (Figure 6B).

Similarly, GPB2 and STAT2 transcription were induced more in

IRF3-transfected cells during OC43 infection (Figure 6C). These

results suggest that IRF3 has the greatest ability to activate antiviral

transcription during human coronavirus infection.

Discussion

In this study, we demonstrated an antiviral role of the IFN-IRF

axis against human coronavirus infection. We first found that

human coronavirus 229E is moderately sensitive to type I and II

IFN, while OC43 is not (Figure 1). Infection of both viruses

efficiently induced ISGs and activated IRF1, IRF3 and IRF7,

suggesting that the antiviral innate response of infected cells is

not fully suppressed during infection (Figures 2, 3). Activation of

IRFs was also observed during SARS-CoV-2 infection (Figure 3).

The loss- and gain-of-function experiments demonstrated that IRF1

D

A B

C

FIGURE 4

Knockdown of IRFs promotes human coronavirus infection. MRC5 cells were transfected with control siRNA (siCont), IRF1 siRNA, IRF3 siRNA or IRF7
siRNA oligoes (5 pmol) using Lipofectamine RNAiMAX transfection reagent. The knockdown of IRFs expression was confirmed by western blot
analysis for IRF1 and IRF3 (A) and RT-qPCR for IRF7 (B). MRC5 cells were then infected with 229E or OC43 at MOI of 0.01. (C) The amounts of viral
RNA were measured by RT-qPCR (n=3). (D) The amounts of viral protein were determined by western blot analysis using antibodies against 229E N
protein, OC43 N protein and GAPDH. For RT-qPCR analysis, the transcription level for each gene was first normalized to GAPDH expression level.
The fold change to control indicates the fold change of the expression level for IRFs siRNA transfected samples to that of the control siRNA
transfected samples. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, Two-way ANOVA.
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and IRF3 have antiviral roles against OC43 infection, while IRF3

and IRF7 were effective in suppressing 229E infection (Figures 4, 5).

We found that 229E is sensitive to type I and II IFN, in

agreement with previous studies (20, 27). Type I IFN has been

shown to inhibit OC43 infection in A549 (lung cancer cells), yet

promotes it in NCI-H520 (lung cancer cells) or Huh 7.5 (hepatoma)

(26). In our current study, IFN treatment did not have any effect on

OC43 replication in MRC5 (normal fibroblast cells) and H1299

(lung cancer cells). This discrepancy could be due to the differences

in cell types. Alternatively, it may be because of IFN concentrations

used in this study, which are lower than those used in previous

studies. The concentrations of IFN in the present study were based

on our previous work on IFN-sensitive viruses (50, 62). A

comparison in the same experimental system showed that the

same concentration of IFN completely shuts down the replication

of IFN-sensitive VSV, but only partially suppresses 229E while not

affecting OC43 (Figures 1F, G). Thus, we conclude that the IFN

sensitivity of human coronavirus 229E and OC43 is not very high.

Human coronaviruses are known to inhibit antiviral immunity

induced by IFNs at various stages (63, 64). This was also evident in

our study as OC43 infection was not sensitive to IFNs (Figure 1;

Supplementary Figure 1). However, the ISGs were induced more

efficiently in cells infected with OC43 than in those infected with

229E, which is relatively sensitive to IFNs (Figure 2). This may be

because OC43 infection does not interfere with the ISG induction

but may inhibit antiviral effectors involved at later stages of the IFN

pathways such as protein kinase R (PKR), the 2′,5′-oligoadenylate
synthetase (OAS)-RNase L pathway andMx proteins. Moreover, we

DA

B E

FC

FIGURE 5

Overexpression of IRFs inhibits human coronavirus infection. H1299 cells were transfected with control pcDNA3 empty plasmid (EV) or the plasmid
containing IRF1 (A), IRF3 (B) or IRF7 (C) and then infected with or without 229E or OC43 at MOI of 0.01. Virus infection was determined by western
blot analysis using antibodies against 229E N protein, OC43 N protein, IRF1, IRF3, IRF7, phosphorylated IRF3 (p-IRF3) and GAPDH. Amounts of
progeny viruses were measured in the supernatant of cells transfected with the plasmid containing with IRF1 (D), IRF3 (E) or IRF7 (F) by TCID50 assay
which were compared to those transfected with empty plasmid (n=6). *p<0.05, **p<0.01, ***p<0.001, Two-way ANOVA.

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

Duncan et al. 10.3389/fimmu.2023.930086

Frontiers in Immunology frontiersin.org09



determined the expression levels of 6 selected ISGs among many

ISG genes possibly induced during OC43 infection. Therefore,

OC43 infection may suppress expression of other ISGs which

may play major roles in protecting host cells. Lastly, induction of

IFN-inducible transmembrane (IFITM), which is an effective

antiviral protein for other viruses, promotes replication of OC43

(26), suggesting that ISG transcription may be required for its

efficient replication.

Certain viral proteins of human coronaviruses are known to

degrade IRF3 (44, 45). This was the case in our study where the

expression of IRF3 was decreased during infection of 229E or OC43

(Figure 3). Nevertheless, we found that IRF3 was efficiently

phosphorylated during viral infection (Figure 3). Furthermore,

siRNA knockdown of IRF3 increased the susceptibility of host

cells to 229E or OC43 infection (Figure 4). These results indicate

that IRF3-mediated antiviral response is still active in cells infected

with human coronaviruses, although viral evasion downregulates its

expression. It was shown previously that BX795, which blocks

phosphorylation and translocation of IRF3 (65), inhibits the

induction of ISGs and promotes replication of SARS-CoV-2 (43).

Considering that IRF3 overexpression inhibited 229E or OC43

infection (Figure 5) and promoted transcription of the antiviral

A

B

C

Q28 FIGURE 6

IRF3 effectively activates transcription of antiviral genes during human coronavirus infection. H1299 cells were transfected with control pcDNA3
plasmid (Cont) or the plasmid containing IRF1, IRF3 or IRF7 and then infected with or without 229E or OC43 at MOI of 0.01. (A) The expression of
IRF1, IRF3 and IRF7 was confirmed by western blot analysis. At 24 hours after infection, the expression of GBP2, IFI2, MAP2, RIG-I, STAT2 and IFN-b
in the cells infected with 229E (B) or OC43 (C) was determined by RT-qPCR (n=4). **p<0.01, ***p<0.001, ****p<0.0001, Two-way ANOVA.
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genes more effectively than IRF1 or IRF7 (Figure 6), IRF3 may be a

common antiviral effector against human coronavirus infection,

which would make it an excellent antiviral therapeutic target. In

contrast, the promotion of IRF1 showed antiviral activities in cells

infected with OC43 while IRF7 expression reduced 229E infection

(Figure 5). The expression analysis of the antiviral genes did not

show the IRF1 and IRF7 bias between 229E and OC43 infection

(Figure 6). To answer this, it is essential to further expand our study

to investigate antiviral functions of the IRFs using global gene

analysis and other human coronaviruses in the future.

IRF1, IRF3 and IRF7 are critical transcriptional regulators of

IFNs and ISGs (19, 66, 67). Alternately, IFNs are major

transcriptional activators of the IRFs (35). Thus, the activities of

IFNs and IRFs are closely related. Interestingly, we found that OC43

is sensitive to antiviral effects of IRF1 and IRF3, but insensitive to

IFNs. IRF1 and IRF3 have been reported to have antiviral functions

independent of the IFN system, which may be essential to inhibit

OC43 infection (41, 42, 68–70). IRF1 and IRF3 upregulate

transcription of certain ISGs in IFN-independent manners during

virus infection (41, 68–70). Moreover, IRF3 can establish antiviral

responses in cells deficient in IFN production (42). Therefore,

antiviral functions of IRF1 and IRF3, independent from the IFN

system, may be involved in host antiviral responses against OC43

infection. This possibility warrants future investigation.

In our western blot analysis, we observed IRF1 bands, which are

higher than expected, at 2 and 3 days after OC43 infection

(Figure 3B). Interestingly, this shift was not observed in cells

infected with 229E or SARS-CoV-2 infected cells. We believe that

the size increase of IRF1 may be due to posttranslational

modifications. The phosphorylation or monoubiquitination of

IRF1 promotes its transcriptional activity (71). While this may be

the reason why IRF1 showed antiviral activities against OC43

infection but not 229E infection (Figure 5A), it is yet to be

clarified why they were observed only in cells infected with OC43.

We use MRC5 cells for most of our studies (Figures 1-4), but

H1299 cells were used for the gain-of-function experiments for IRFs

(Figure 5). This is because we encountered technical problems

achieving sufficient expression levels of IRFs without causing cell

morbidity or affecting virus infection in MRC5 cells

during transfection.
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SUPPLEMENTARY FIGURE 1

H1299 cells were left untreated or treated with IFN-a or IFN-g, for 16 hours

prior to infection (IFN prior to infection) or from 16 hours prior to infection to
Day 6 (IFN whole period). The cells were challenged with 229E or OC43

infection at MOI of 0.01. (A) Western blot analysis of viral protein was
conducted using anti 229E N protein, OC43 N protein and GAPDH

antibodies. (B) TCID50 assay was performed to measure the progeny virus
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of 229E or OC43 at 6 days post infection. *p<0.05, **p<0.01, ***p<0.001,
Two-way ANOVA.

SUPPLEMENTARY FIGURE 2

(A) MRC5 cells were left untreated or stimulated with IFN-a (500 U/ml) or

IFN-g (100 U/ml) for 16 hours. (B, C) MRC5 cells were left uninfected or
infected with UV-inactivated 229E (B) or UV-inactivated OC43 (C) at MOI of

0.01 for 2 and 4 days. The expression levels of ISG mRNA (GBP2, RIG-I and
STAT2) were determined by RT-qPCR. The relative quantification (RQ)

indicates the fold change of the expression level for infected samples

towards that of the non-infected controls at the same time point post
infection. The transcriptional level for each gene was calculated by

normalizing to GAPDH expression level and then normalized by the
corresponding control. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, Two-

way ANOVA.

SUPPLEMENTARY FIGURE 3

(A) MRC5 cells were left untreated or stimulated with IFN-a (500 U/ml) or
IFN-g (100 U/ml) for 8, 16, 24 and 48 hours. (B, C) MRC5 cells were left

uninfected or infected with UV-inactivated 229E (B) or UV-inactivated OC43

(C) at MOI of 0.01 for 2 and 4 days. The activation of IRF1, 3 and 7 was
determined by western blot analysis using antibodies against 229E N protein,

OC43 N protein, IRF1, IRF3, IRF7, phosphorylated (p-IRF3) and GAPDH.

SUPPLEMENTARY FIGURE 4

Human dermal fibroblasts were left uninfected (-) or infected (+) with 229E
(A) or OC43 (B) at MOI of 0.01. The activation of IRF1, IRF3 and IRF7 was

determined by western blot analysis using antibodies against 229E N protein,
OC43 N protein, IRF1, IRF3, IRF7, phosphorylated (p-IRF3) and GAPDH.

SUPPLEMENTARY FIGURE 5

H1299 cells were transfected with control pcDNA3 plasmid (Cont) or the

plasmid containing IRF1, IRF3 or IRF7. At 24 hours after transfection, the
expression of GBP2, IFI2, MAP2, RIG-I, STAT2 and IFN-b was determined by

RT-qPCR (n=4). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, Two-
way ANOVA.

SUPPLEMENTARY TABLE 1

Sequence of qPCR primers.
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