ID No.	K2010	
Project Title	Molecular signature of hematopoietic aging	
Principal	Estelle Duprez (1	Research Director, Centre de Recherche en
Investigator	Cancérologie de Marseille (CRCM), Institut-Paoli Calmettes (IPC))	
Project Members		
IMSUT Host	Atsushi Iwama	(Prof., IMSUT)
Researcher Members	Poplineau Mathilde	(PhD/Postdoc, CRCM, IPC)
	Léonard Hérault	(PhD Student, CRCM, IPC)
	Mazuel Adrien	(Undergraduatheie Student, CRCM, IPC)
	Naoya Takayama	(Associate Prof., Ciba Univ.)
	Shuhei Koide	(Postdoc, IMSUT)

Report

Resistance to treatment is due to the heterogeneity of the tumor which contains a subset of cancer cells that escape treatment and are responsible for the relapse. We took advantage of the PLZF/RARA retinoic acid (RA) resistant acute promyelocytic leukemia (APL) model to catch relapse-initiating cell features and their vulnerabilities. By developing an integrative single-cell multi-omics analysis (scRNA-seq and scATAC-seq), we uncovered transcriptional and chromatin heterogeneity of the PLZF/RARAAPL blasts. We highlighted a subset of cells insensitive to RA-induced differentiation with a strong DNA repair signature ("Rep" cluster) and exhibiting a fine-tuned transcriptional network targeting the histone methyltransferase Ezh2. Combining epigenomic profiling with mouse-derived models for Ezh2 catalytic inhibition or total KO, we revealed an independent methyltransferase Ezh2 activity linked to RA resistance. These findings demonstrate the power of single-cell multi-omics integration to highlight paths to sensitize therapy-resistant leukemia cells.