ID No.	K3006
Project Title	Establishment of a model system of co-infection of <i>Mycobacterium</i> and HIV in human monocyte cell lines to study their interactions
Principal Investigator	Kaixia Mi (Principal Investigator, Institute of Microbiology, CAS)
Project Members IMSUT Host Researcher	Yasushi Kawaguchi (Prof., IMSUT)
Members	Xinling Hu(Assistant Prof., Institute of Microbiology, CAS)Xintong Zhou(Assistant Prof., Institute of Microbiology, CAS)Jin Gohda(Project Associate Prof., IMSUT)
Report	

In the previous fiscal year, we found that infection with the BCG strain of Mycobacterium tuberculosis (Mtb) up-regulates transcription of HIV-1 latent provirus in HIV-1 latently-infected model cells derived from human monocyte cells, THP-1 cells, indicating that latent HIV-1 can be re-activated by Mtb infection. This year, we tried to elucidate signaling transduction pathways involved in re-activation of latent HIV-1 by Mtb infection. It is known that toll-like receptors recognize structure of Mtb-derived pathogens and induce innate immune responses in response to Mtb infection. MyD88 is an adaptor protein essential for the signal transduction through almost all toll-like receptors. Therefore, we established MyD88-defficient HIV-1 latent model THP-1 cells using a CRISPR/Cas9 system. Two clones of wild-type cells or MyD88-deficient cells were incubated with BCG. NanoLuc activities in both MyD88-deficient cell clones were significantly reduced, although the activities remained in those clones. This result suggest that Mtb infection induces re-activation of latent HIV-1 in toll-like receptor-dependent and independent manners.