ID No.	K3001
Project Title	Studying roles of Toll-like receptor 9 in autoimmune diseases
Principal Investigator	Eicke Latz (Prof., Univ. Bonn)
Project Members IMSUT Host Researcher	Kensuke Miyake (Prof., IMSUT)
Members	Tatjana Reuter (PhD Student, Univ. Bonn) Takuma Shibata (Assistant Prof., IMSUT) Ryota Sato (Project Assistant Prof., IMSUT)

Report

Toll-like receptors (TLRs) are expressed in immune cells and sense pathogen components to mount defense responses. Although TLR9 basically responds to microbial single-stranded DNA (ssDNA), TLR9 responses to self-derived ssDNA have been implicated in a variety of autoimmune diseases. Here, we will study roles of TLR9 in activation, proliferation, and differentiation of monocyte/macrophages and dendritic cells in steady and disease states. We will use Tlr9^{-/-}, Pld3^{-/-}, and Dnase1^{-/-} mice, where TLR9 drives autoimmune responses. TLR9-dependent alteration in tissue macrophages in these mice will be studied. We will ask whether some tissue macrophages are increased in Dnase1-/- and Pld3-/- mice. If TLR9-dependent increase in tissue macrophages are confirmed, roles of the increased tissue macrophages in tissue damages found in these mice will be studied. In parallel, molecular mechanisms behind TLR9-dependent increase in monocytes/macrophages will be studied. We hypothesize that TLR9 directly drives proliferation and differentiation of tissue macrophages. In 2019, we have already established the Ba/F3 line which proliferate in TLR9-dependent manner. In 2020, we conducted FACS analyses of tissue macrophages in *DnaseT*, and Dnase1^{-/-} Tlr9^{-/-} mice to identify the monocyte subset that increased in TLR9-dependent manner. Unfortunately, we could not find any alteration in monocytes/macrophages. On the other hand, we generated Pld3-- mice and now are crossing them with Tlr9- mice. Pld3-mice will be studied in near future.