ID No.	K2011
Project Title	Molecular mechanisms underlying eukaryotic chromosome segregation
Principal Investigator	Hyeseong Cho (Prof., Ajou Univ. School of Medicine)
Project Members IMSUT Host Researcher	Makoto Nakanishi (Prof., IMSUT)
Members	Chang-Woo Lee(Prof., Sungkyounkwan Univ.)Ho Chul Kang(Assistant Prof., Ajou Univ.)Youngsoo Lee(Assistant Prof., Ajou Univ.)Toru Hirota(Head, Cancer Institute)
Report	

We found that PLK1 recruitment by RSF1 at centromeres creates an activating phosphorylation on Thr236 in the activation loop of Aurora B and this is indispensable for the Aurora B activation. In structural modeling the phosphorylated Thr236 enhances the base-catalysis by Asp200 nearby, facilitating the Thr232 autophosphorylation. Accordingly, RSF1-PLK1 is central for Aurora B-mediated microtubule destabilization in error correction. However, under full microtubule-kinetochore attachment RSF1-PLK1 positions at kinetochores, halts activating Aurora B and phosphorylates BubR1, regardless of tension. Spatial movement of RSF1-PLK1 to kinetochores is triggered by Aurora B-mediated phosphorylation of centromeric histone H3 on Ser28. We propose a regulatory RSF1-PLK1 axis that spatiotemporally controls on/off switch on Aurora B. This feedback circuit among RSF1-PLK1-Aurora B may coordinate dynamic microtubule-kinetochore attachment in early mitosis when full tension yet to be generated.